High Performance Fibers via Simultaneous Fiber Spinning and Photopolymerization (Prof. Chris Ellison, Univ. of Minnesota)


High Performance Fibers via Simultaneous Fiber Spinning and Photopolymerization

Prof. Chris Ellison

Dept. of Chemical Engineering & Materials Science

Univ. of  Minnesota


Synthetic fibers have been manufactured for decades using solvents or heat to reduce the viscosity of pre-formed polymers and promote drawing. However, nature has engineered spiders and silkworms with benign ways of making silk fibers with high strength and toughness. Conceptually, their approach of chemically linking small functional units (i.e., proteins) into long chain molecules and solid fibrillar structures "on-demand'' is fundamentally different from current synthetic fiber manufacturing methods. Drawing inspiration from nature, a method will be described that uses light to trigger a thiol-ene photopolymerization to rapidly transform reactive liquid mixtures into solid thread-like structures as they are forced out of a capillary at high speeds. Besides being manufactured without using solvents/volatile components or heat, these fibers are mechanically robust and have excellent chemical and thermal stability due to their crosslinked nature. During processing, the balance between curing kinetics, fiber flight time, and monomer mixture viscoelasticity is essential for the formation of defect free fibers. This work focuses on developing a universal operating diagram to show how the intricate interplay of gel time, flight time, and fluid relaxation time leads to the formation of uniform fibers and also other undesirable fiber morphologies such as beads-on-string, fused fibers, non-uniform fibers, and droplets. This predictive capability enables adaptation of this spinning concept to all existing fiber spinning platforms, and customization of monomer formulations to target desired properties.

Speakers Background:

Chris Ellison is an Associate Professor and holder of the Piercy Professorship in the Department of Chemical Engineering and Materials Science at the University of Minnesota. From 2008-2016, he was a faculty member in the McKetta Department of Chemical Engineering at the University of Texas at Austin. He earned a B.S. in Chemical Engineering from Iowa State University and a Ph.D. in Chemical Engineering from Northwestern University. His group’s current research interests include structure, dynamics, and processing of micro- and nano-structured polymers, light-activated chemistry for thin film patterning and fiber manufacturing, and engineering sustainable processes and materials.

Prof. Ellison's Univ of Minn. web page link



Tuesday, February  25, 2020


Michael’s at Shoreline
2960 N Shoreline Blvd
Mountain View, CA



6 PM social hour
7 PM dinner
8 PM lecture


Employed/postdoc Student/unemployed/retired
Early Registration  $30 $15
Registration $35 $20
Walk-in (not guaranteed) $40 $25

Lecture-only is free.



We accept cash or checks at the door, or online payment via credit card. No-shows are responsible for full payment of registration fee.


Please register below or contact:

Julie Cushen


phone: 540-533-4448

Deadline for registration:

End of advanced registration: Tuesday, February 18, 11:59 PM

End of regular registration: Saturday, February 22, 5:00 PM

Dinner Selection:

Seafood - Broiled Salmon with lemon beurre blanc
Chicken - Breast of Chicken with Marsala
Vegetarian - Grilled Vegetable Brochette with Wild Rice

You should receive confirmation of your registration; if not, please contact us again.

We are sorry but registration for this event is now closed.

Please contact us if you would like to know if spaces are still available.